This paper studies some basic problems in a multiple-object auction modelusing methodologies from theoretical computer science. We are especiallyconcerned with situations where an adversary bidder knows the biddingalgorithms of all the other bidders. In the two-bidder case, we derive anoptimal randomized bidding algorithm, by which the disadvantaged bidder canprocure at least half of the auction objects despite the adversary's a prioriknowledge of his algorithm. In the general $k$-bidder case, if the number ofobjects is a multiple of $k$, an optimal randomized bidding algorithm is found.If the $k-1$ disadvantaged bidders employ that same algorithm, each of them canobtain at least $1/k$ of the objects regardless of the bidding algorithm theadversary uses. These two algorithms are based on closed-form solutions tocertain multivariate probability distributions. In situations where aclosed-form solution cannot be obtained, we study a restricted class of biddingalgorithms as an approximation to desired optimal algorithms.
展开▼
机译:本文使用理论计算机科学的方法研究了多对象拍卖模型中的一些基本问题。我们特别关注对手方竞标者了解所有其他竞标者的竞标算法的情况。在有两个竞标者的情况下,我们推导了一种最优的随机竞标算法,通过该算法,尽管对手具有他的算法的先验知识,但处于不利地位的竞标者仍可以采购至少一半的拍卖对象。在一般的$ k $竞标者情况下,如果对象数量是$ k $的倍数,则找到最佳随机竞标算法;如果$ k-1 $处境不利的竞标者使用相同的算法,则每个投标者至少可以获得$ 1 / k $的对象,与对手使用的出价算法无关。这两种算法均基于封闭形式的解决方案来确定多元概率分布。在无法获得封闭形式的解决方案的情况下,我们研究一类受限的出价算法,作为对所需最佳算法的近似。
展开▼